Applications of AI in Financial Services
With key business benefits and pressure from tech savvy consumers top of mind, AI algorithms are being implemented by FIs across every financial service—here’s how:
AI in Personal Finance
Consumers are hungry for financial independence, and providing the ability to manage one’s financial health is the driving force behind adoption of AI in personal finance. Whether offering 24/7 financial guidance via chatbots powered by natural language processing or personalizing insights for wealth management solutions, AI is a necessity for any financial institution looking to be a top player in the industry.
An early example of AI in personal finance is Capital One’s Eno. Eno launched in 2017 and was the first natural language SMS text-based assistant offered by a US bank. Eno generates insights and anticipates customer needs throughover 12 proactive capabilities, such as alerting customers about suspected fraud or price hikes in subscription services.
Example of AI in Finance:
Risk assessment
Can you use artificial intelligence to determine whether someone is eligible for a loan? Definitely. In fact, banks and apps are using machine learning algorithms to not only determine a person’s loan eligibility, but also provide personalized options, according to Towards Data Science. The advantage? AI isn’t biased and can make a determination on loan eligibility quickly and more accurately.
Risk management
Risk mitigation is always an important — yet ongoing challenge — in banking (and practically every other industry). Now, machine learning can help experts use data to “pinpoint trends, identify risks, conserve manpower and ensure better information for future planning,” according to Built In.
Fraud detection, management and prevention
Have you ever received a phone call from your credit card company after you’ve made several purchases? Thanks to artificial intelligence, fraud detection systems analyze a person’s buying behavior and trigger an alert if something seems out of the ordinary or contradicts your traditional spending patterns, according to Towards Data Science.
Credit decisions
Towards Data Science explains that artificial intelligence can quickly and more accurately assess a potential customer based on a variety of factors, including smartphone data (plus, machines aren’t biased.)
Financial advisory services
Looking to follow the latest financial trends? Interested in a portfolio review? Artificial intelligence algorithms can analyze a person’s portfolio (or the latest trends or most types of relevant financial information) so that you can receive the information you need as quickly as possible, according to Forbes.
Trading
Since artificial intelligence is used to analyze patterns within large data sets, it’s no surprise that it’s often used in trading. As Built In explains, AI-powered computers can sift through data faster than humans, which expedites the entire process and saves large chunks of time.
Managing finances/personalized banking
Chatbots and virtual assistants have reduced (and in some cases eliminated) the need to spend time on the phone waiting to speak with a customer service representative. Now, thanks to technology and AI, customers can check their balance, schedule payments, look up account activity, ask questions with a virtual assistant and receive personalized banking advice whenever it’s most convenient, according to Towards Data Science.
Preventing cyberattacks
Consumers want to be reassured that banks and financial institutions will keep their money and personal information as safe and secure as possible, and artificial intelligence can help. It’s estimated that up to 95% of cloud breaches are caused by human error. Artificial intelligence can boost company security by analyzing and determining normal data patterns and trends, and alerting companies of discrepancies or unusual activity.
Better predict and assess loan risks
As Forbes explains, artificial intelligence can analyze a customer’s spending patterns and actions, which can predict loan borrowing behavior. This is also important in areas around the world where people have smartphones and other means of connection and communication but may not have traditional credit. Forbes gives this example: A loan applicant can download an app and the lender would use it to analyze the person’s “digital footprint” — which includes social media use, browsing history and more in order to build a more complete picture.
Enabling 24/7 customer interactions
Thanks to artificial intelligence and the prevalence of virtual assistants and chatbots, customers can ask questions at all hours of the day (and night!) and don’t have to wait to speak with a person.”It’s always about making the human interaction more efficient, because in many of these cases, there’s still a customer service rep,” says Rob Thomas, senior vice president of IBM’s Cloud and Data Platform, in a recent Yahoo! Finance video. “But AI is making them more productive, making them better at solving the problem.” This means “virtual assistants can respond to customer needs with minimal employee input,” according to AI News. “A straightforward means of increasing productivity, the time and effort spent on generic customer queries is reduced, freeing up teams to focus on longer-term projects that drive innovation across the business.”
Reducing the need for repetitive work/process automation
AI can automate repetitive mundane, time-consuming tasks, such as reviewing documents or pulling information from applications, which will free up employees to tackle other projects.
Reducing false positives and human error
People make mistakes, and human error is an unfortunate reality. In the financial services industry, 94% of surveyed IT professionals said they aren’t confident that their employees, consultants and partners can safely protect customer data. Thankfully, artificial intelligence can help reduce false positives and human error.